Silica Induces Changes in Cytosolic Free Calcium, Cytosolic pH, and Plasma Membrane Potential in Bovine Alveolar Macrophages

نویسندگان

  • Attila Tárnok
  • Thomas Schlüter
  • Ingeborg Berg
  • Günther Gercken
چکیده

The mineral-dust induced activation of pulmonary phagocytes is thought to be involved in the induction of severe lung diseases. The activation of bovine alveolar macrophages (BAM) by silica was investigated by flow cytometry. Short-term incubation (< 10 min) of BAM with silica gel and quartz dust particles induced increases in the cytosolic free calcium concentration ([Ca2+]i), decreases in intracellular pH (pHi), and increases in plasma membrane potential (PMP). The extent of these changes was concentration dependent, related to the type of dust and was due to Ca2+ influx from the extracellular medium. An increase in [Ca2+]i was inhibited, when extracellular Ca2+ was removed. Furthermore the calcium signal was quenched by Mn2+ and diminished by the calcium channel blocker verapamil. The protein kinase C specific inhibitor bisindolylmaleimide II (GF 109,203 X) did not inhibit the silica-induced [Ca2+]i rise. In contrast, silica-induced cytosolic acidification and depolarization were inhibited by GF 109,203 X but not by removal of extracellular calcium. Addition of TiO2 particles or heavy metal-containing dusts had no effect on any of the three parameters. Our data suggest the existence of silica-activated transmembrane ion exchange mechanisms in BAM, which might be involved in the specific cytotoxicity of silica by Ca(2+)-dependent and independent pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell alkalosis elevates cytosolic Ca2+ in rabbit resident alveolar macrophages.

Disruption of cellular acid-base status alters the host defence functions of alveolar macrophages (m phi). These pH effects might be mediated by pH-sensitive changes in the signalling pathways of the effector functions of m phi. The present study examined the effects of intracellular pH (pH(i)) on the free cytosolic calcium concentration ([Ca(2+)](i)), an important second messenger for cell fun...

متن کامل

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

Effects of bafilomycin A1 on cytosolic pH of sheep alveolar and peritoneal macrophages: evaluation of the pH-regulatory role of plasma membrane V-ATPases.

The role of plasma membrane V-ATPase activity in the regulation of cytosolic pH (pHi) was determined for resident alveolar and peritoneal macrophages (m theta) from sheep. Cytosolic pH was measured using 2',7'-biscarboxyethyl-5,6-carboxyfluorescein (BCECF). The baseline pHi of both cell types was sensitive to the specific V-ATPase inhibitor bafilomycin A1. Bafilomycin A1 caused a significant (a...

متن کامل

Multiparameter digitized video microscopy of toxic and hypoxic injury in single cells.

There is no clear picture of the critical events that lead to the transition from reversible to irreversible injury. Many studies have suggested that a rise in cytosolic free Ca2+ initiates plasma membrane bleb formation and a sequence of events that lead ultimately to cell death. In recent studies, we have measured changes in cytosolic free Ca2+, mitochondrial membrane potential, cytosolic pH,...

متن کامل

Dynamic Regulation of the Mitochondrial Proton Gradient during Cytosolic Calcium Elevations*

Mitochondria extrude protons across their inner membrane to generate the mitochondrial membrane potential (ΔΨ(m)) and pH gradient (ΔpH(m)) that both power ATP synthesis. Mitochondrial uptake and efflux of many ions and metabolites are driven exclusively by ΔpH(m), whose in situ regulation is poorly characterized. Here, we report the first dynamic measurements of ΔpH(m) in living cells, using a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1997